Shunpeng Lu 1,2Jiangxiao Bai 1,2Hongbo Li 1,2Ke Jiang 1,2[ ... ]Dabing Li 1,2,**
Author Affiliations
Abstract
1 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Key Laboratory of Electronic Materials and Devices of Tianjin, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated. Then, the external quantum efficiency (EQE) and light extraction efficiency (LEE) are systematically investigated by comparing size and edge effects. Here, it is revealed that the peak optical output power increases by 81.83% with the size shrinking from 50.0 to 25.0 μm. Thereinto, the LEE increases by 26.21% and the LEE enhancement mainly comes from the sidewall light extraction. Most notably, transverse-magnetic (TM) mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design. However, when it turns to 12.5 μm sized micro-LEDs, the output power is lower than 25.0 μm sized ones. The underlying mechanism is that even though protected by SiO2 passivation, the edge effect which leads to current leakage and Shockley-Read-Hall (SRH) recombination deteriorates rapidly with the size further shrinking. Moreover, the ratio of the p-contact area to mesa area is much lower, which deteriorates the p-type current spreading at the mesa edge. These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm, which will pave the way for wide applications of deep ultraviolet (DUV) micro-LEDs.
AlGaN deep ultraviolet micro-LEDs light extraction efficiency size effect edge effect 
Journal of Semiconductors
2024, 45(1): 012504
Lei Han 1,2,3Yuanbin Gao 1,2,3Sheng Hang 1,2,3Chunshuang Chu 1,2,3,*[ ... ]Zi-Hui Zhang 1,2,3,**
Author Affiliations
Abstract
1 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China
2 Key Laboratory of Electronic Materials and Devices of Tianjin, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
3 Hebei Key Laboratory of Advanced Laser Technology and Equipment, Tianjin 300401, China
4 Key Engineering Center of Flat-Panel-Display Glass and Equipment, Shijiazhuang 050035, China
The hole injection capability is essentially important for GaN-based vertical cavity surface emitting lasers (VCSELs) to enhance the laser power. In this work, we propose GaN-based VCSELs with the p-AlGaN/p-GaN structure as the p-type hole supplier to facilitate the hole injection. The p-AlGaN/p-GaN heterojunction is able to store the electric field and thus can moderately adjust the drift velocity and the kinetic energy for holes, which can improve the thermionic emission process for holes to travel across the p-type electron blocking layer (p-EBL). Besides, the valence band barrier height in the p-EBL can be reduced as a result of usage of the p-AlGaN layer. Therefore, the better stimulated radiative recombination rate and the increased laser power are obtained, thus enhancing the 3 dB frequency bandwidth. Moreover, we also investigate the impact of the p-AlGaN/p-GaN structure with various AlN compositions in the p-AlGaN layer on the hole injection capability, the laser power, and the 3 dB frequency bandwidth.
GaN-based VCSEL hole injection laser power modulation response 
Chinese Optics Letters
2022, 20(3): 031402
王玮东 1,2,*楚春双 1,2张丹扬 1,2毕文刚 1,2[ ... ]张紫辉 1,2
作者单位
摘要
1 河北工业大学电子信息工程学院 天津市电子材料与器件重点实验室, 天津 300401
2 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室, 天津 300401
研究了俄歇复合、电子泄漏和空穴注入对深紫外发光二极管(DUV LED)效率衰退的影响。结果表明,当俄歇复合系数从10-32 cm6·s-1增大到10-30 cm6·s-1时,俄歇复合对效率衰退的影响很小。当俄歇复合系数增大到10-29 cm6·s-1时,俄歇复合对效率衰退有显著的影响。然而,对于AlGaN材料而言,俄歇复合系数很难达到10-29 cm6·s-1。此外,本研究还发现,即使设置的俄歇复合系数等于10-32 cm6·s-1,DUV LED的效率衰退依旧随着电子泄漏的增加而增大。因此,这进一步证明了电子泄漏是导致DUV LED效率衰退的主要因素。此外,本工作还证明了空穴注入效率的提高可以有效地抑制DUV LED的效率衰退问题,这主要是由于更多的电子与空穴在量子阱中复合产生了光子,降低了电子从有源区中泄漏的几率。
深紫外发光二极管 俄歇复合 电子泄漏 空穴注入 效率衰退发 DUV LED Auger recombination electron leakage hole injection efficiency droop 
发光学报
2021, 42(7): 897
Houqiang Xu 1,2Jiean Jiang 1,2,3Li Chen 1Jason Hoo 4[ ... ]Jichun Ye 1,2,7,*
Author Affiliations
Abstract
1 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
4 Advanced Micro-Fabrication Equipment Inc., Shanghai 201201, China
5 Institute of Micro-Nano Photoelectron and Electromagnetic Technology Innovation, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
6 e-mail: guowei@nimte.ac.cn
7 e-mail: jichun.ye@nimte.ac.cn
AlGaN-based solid state UV emitters have many advantages over conventional UV sources. However, UV-LEDs still suffer from numerous challenges, including low quantum efficiency compared to their blue LED counterparts. One of the inherent reasons is a lack of carrier localization effect inside fully miscible AlGaN alloys. In the pursuit of phase separation and carrier localization inside the active region of AlGaN UV-LED, utilization of highly misoriented substrates proves to be useful, yet the carrier distribution and recombination mechanism in such structures has seldom been reported. In this paper, a UV-LED with step-bunched surface morphology was designed and fabricated, and the internal mechanism of high internal quantum efficiency was studied in detail. The correlation between microscale current distribution and surface morphology was provided, directly demonstrating that current prefers to flow through the step edges of the epitaxial layers. Experimental results were further supported by numerical simulation. It was found that efficient radiative recombination centers were formed in the inclined quantum well regions. A schematic three-dimensional energy band structure of the multiple quantum wells (MQWs) across the step was proposed and helps in further understanding the luminescence behavior of LEDs grown on misoriented substrates. Finally, a general principle to achieve carrier localization was proposed, which is valid for most ternary III-V semiconductors exhibiting phase separation.
Photonics Research
2021, 9(5): 05000764
Author Affiliations
Abstract
1 State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, China
2 Key Laboratory of Electronic Materials and Devices of Tianjin, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
3 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
4 e-mail: zh.zhang@hebut.edu.cn
5 e-mail: sunxj@ciomp.ac.cn
In this work, a self-powered GaN-based metal-semiconductor-metal photodetector (MSM PD) with high responsivity has been proposed and fabricated. The proposed MSM PD forms an asymmetric feature by using the polarization effect under one electrode, such that we adopt an AlGaN/GaN heterojunction to produce the electric field, and by doing so, an asymmetric energy band between the two electrodes can be obtained even when the device is unbiased. The asymmetric feature is proven by generating the asymmetric current-voltage characteristics both in the dark and the illumination conditions. Our results show that the asymmetric energy band enables the self-powered PD, and the peak responsivity wavelength is 240 nm with the responsivity of 0.005 A/W. Moreover, a high responsivity of 13.56 A/W at the applied bias of 3 V is also achieved. Thanks to the very strong electric field in the charge transport region, when compared to the symmetric MSM PD, the proposed MSM PD can reach an increased photocurrent of 100 times larger than that for the conventional PD, even if the illumination intensity for the light source becomes increased.
Photonics Research
2021, 9(5): 05000734
Ke Jiang 1,2Xiaojuan Sun 1,2,6,*Zi-Hui Zhang 1,3Jianwei Ben 1,2,5[ ... ]Dabing Li 1,2,7,*
Author Affiliations
Abstract
1 State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
3 Key Laboratory of Electronic Materials and Devices of Tianjin, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
4 Key Laboratory of Advanced Structural Materials, Ministry of Education, Changchun University of Technology, Changchun 130012, China
5 Current Address: College of Materials Science and Engineering, Shenzhen University, Shenzhen 518071, China
6 e-mail: sunxj@ciomp.ac.cn
7 e-mail: lidb@ciomp.ac.cn
AlGaN solar-blind ultraviolet detectors have great potential in many fields, although their performance has not fully meet the requirements until now. Here, we proposed an approach to utilize the inherent polarization effect of AlGaN to improve the detector performance. AlGaN heterostructures were designed to enhance the polarization field in the absorption layer, and a high built-in field and a high electron mobility conduction channel were formed. As a result, a high-performance solar-blind ultraviolet detector with a peak responsivity of 1.42 A/W at 10 V was achieved, being 50 times higher than that of the nonpolarization-enhanced one. Moreover, an electron reservoir structure was proposed to further improve the performance. A higher peak responsivity of 3.1 A/W at 30 V was achieved because the electron reservoir structure could modulate the electron concentration in the conduction channel. The investigation presented here provided feasible approaches to improve the performance of the AlGaN detector by taking advantage of its inherent property.
Photonics Research
2020, 8(7): 07001243
Author Affiliations
Abstract
1 Institute of Micro-Nano Photoelectron and Electromagnetic Technology Innovation, School of Electronics and Information Engineering, Hebei University of Technology, Tianjin 300401, China
2 Key Laboratory of Electronic Materials and Devices of Tianjin, Tianjin 300401, China
3 State Key Laboratory of Solid-State Lighting, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
The tilted energy band in the multiple quantum wells (MQWs) arising from the polarization effect causes the quantum confined Stark effect (QCSE) for [0001] oriented III-nitride-based near ultraviolet light-emitting diodes (NUV LEDs). Here, we prove that the polarization effect in the MQWs for NUV LEDs can be self-screened once the polarization-induced bulk charges are employed by using the alloy-gradient InxGa1-xN quantum barriers. The numerical calculations demonstrate that the electric field in the quantum wells becomes weak and thereby flattens the energy band in the quantum wells, which accordingly increases the spatial overlap for the electron-hole wave functions. The polarization self-screening effect is further proven by observing the blueshift for the peak emission wavelength in the calculated and the measured emission spectra. Our results also indicate that for NUV LEDs with a small conduction band offset between the quantum well and the quantum barrier, the electron injection efficiency for the proposed structure becomes low. Therefore, we suggest doping the proposed quantum barrier structures with Mg dopants.
230.3670 Light-emitting diodes 230.5590 Quantum-well, -wire and -dot devices 
Chinese Optics Letters
2019, 17(12): 122301
Author Affiliations
Abstract
1 Institute of Micro-Nano Photoelectron and Electromagnetic Technology Innovation, School of Electronics and Information Engineering, Hebei University of Technology, Key Laboratory of Electronic Materials and Devices of Tianjin, Tianjin 300401, China
2 e-mail: zh.zhang@hebut.edu.cn
3 Department of Photonics and Institute of Electro-Optical Engineering, Taiwan Chiao Tung University, Hsinchu 30010, China
4 Department of Electrical Engineering and Computer Sciences and TBSI, University of California at Berkeley, Berkeley, California 94720, USA
It is well known that the p-type AlGaN electron blocking layer (p-EBL) can block hole injection for deep ultraviolet light-emitting diodes (DUV LEDs). The polarization induced electric field in the p-EBL for [0001] oriented DUV LEDs makes the holes less mobile and thus further decreases the hole injection capability. Fortunately, enhanced hole injection is doable by making holes lose less energy, and this is enabled by a specifically designed p-EBL structure that has a graded AlN composition. The proposed p-EBL can screen the polarization induced electric field in the p-EBL. As a result, holes will lose less energy after going through the proposed p-EBL, which correspondingly leads to the enhanced hole injection. Thus, an external quantum efficiency of 7.6% for the 275 nm DUV LED structure is obtained.
Photonics Research
2019, 7(4): 040000B1
作者单位
摘要
1 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2 一汽轿车股份有限公司, 吉林 长春 130000
为了满足太阳光谱在170~380 nm波段的精确观测需求, 设计了波长重复性精度优于±002 nm的紫外双光栅光谱仪。波长扫描机构是双光栅光谱仪的关键组件, 根据凹面光栅色散原理, 将光学设计指标转换为波长扫描机构设计的输入参数, 分析了影响光谱仪波长重复性精度的误差源。根据分析结果得知, 丝杠的重复定位误差是影响波长重复性的主要误差源。选用重复定位精度为±2 μm的丝杠设计了波长扫描机构, 并对光谱仪整机进行了设计。以汞灯光源对光谱仪的波长重复性指标进行了验证实验。实验结果表明, 设计的光谱仪波长重复性介于-0005~+0007 nm之间, 满足波长重复性优于±002 nm的指标要求。
双光栅光谱仪 波长扫描机构 波长重复性 凹面光栅 误差分析 double grating spectrometer wavelength scanning mechanism wavelength repeatability concave grating error analysis 
中国光学
2018, 11(2): 219
作者单位
摘要
1 中国林业科学研究院资源信息研究所 国家林业局林业遥感与信息技术实验室, 北京 100091
2 中国传媒大学, 北京 100024
3 国家林业局森林防火预警监测信息中心, 北京 100714
对Landsat TM/ETM+数据进行抽样统计分析基础上, 把Landsat TM/ETM+的红外、短波红外和近红外等波段数据相结合, 采用窗口动态阈值算法构建燃烧区识别模型;在此基础上, 为定量生成火线轮廓参数, 通过连通性判断、孔洞填充、小斑块去除和边缘细化等图像处理方法对识别的燃烧区进行处理;并在ENVI 4.8+IDL语言环境下, 实现了基于Landsat TM/ETM+数据自动生成火线轮廓参数算法处理过程的程序化.结果表明, 总体判对率为86.44%, 总体误判率为13.56%(其中漏判率为1.77%, 错判率为11.79%);该方法可满足林火扑救中对火线轮廓参数定量宏观监测的应用需求.
卫星遥感技术 森林火灾 火线轮廓 林火扑救 satellite remote sensing technique forest fire fire line contour fire suppression 
红外与毫米波学报
2014, 33(6): 642

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!